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WatGPT: A Quant-Based LLM 

Abstract 

In this paper, we introduce WatGPT, a specialized Large Language Model (LLM) designed for handling a range of 

quantitative finance tasks. Leveraging the latest advancements in model architectures such as Structured State Spaces (SSMs), 

Receptance Weighted Key Value (RWKV) RNNs, and traditional Transformers, WatGPT aims to provide robust solutions for 

tasks including portfolio optimization, risk management, and algorithmic trading. Unlike general-purpose models, WatGPT 

integrates domain-specific knowledge, which significantly enhances its performance on specialized tasks. 

Keywords: WatGPT, Large Language Model (LLM), Quantitative Finance, NLP (Natural Language Processing), Financial 

Analysis, Risk Management, Algorithmic Trading, Structured State Spaces (SSMs), Receptance Weighted Key Value (RWKV) 

RNNs, Transformers, HiPPO 

 

1 Introduction 

The integration of NLP technologies in financial 

applications has seen exponential growth, driven by the 

capabilities of LLMs to understand and generate human-like 

text. However, the unique challenges of the financial 

domain—such as the need for precise risk assessment and 

real-time decision-making—demand specialized solutions. 

WatGPT is designed to address these challenges by 

incorporating financial domain expertise directly into its 

architecture and training process, offering improved accuracy 

and efficiency on finance-specific tasks. 

1.1 Project Scope and Goals 

The development of WatGPT was guided by the need to 

create a more focused and effective tool for financial analysis 

and decision-making. The primary objectives for WatGPT 

include code adaptation—adjusting the code of in-house 

models to better suit specified tasks, either through direct 

modifications by user command or by autonomously adapting 

to fulfill task requirements, and finance advisory—providing 

expert financial advice through a conversational model that 

leverages in-house models and data, focusing on user queries 

and contextual understanding.  

 

Given the broad potential applications and the importance 

of maintaining manageable scope, the project emphasizes the 

creation of a model that integrates seamlessly with existing 

financial analysis tools and datasets. It focuses on a large-

language model that plays the role of an expert financial 

advisor and helper. Code adaptation was neglected as core 

functionality of this model for several reasons—the LLM 

would require new architecture for code-style corpus, the 

LLM would not be as strong in the financial domain, and a 

code synthesizer model could be well achieved through a 

separate, better tailored model for our needs. As a result, 

separate projects exist for code adaption and data 

augmentation.  

2 Dataset 

2.1 Data Criterion 

WatGPT should be trained on solely finance and 

quantitative text and numerical data, as we want to constraint 

the pre-context of the LLM to these two realms.  

 

Textual data includes any of the following—regulatory 

filings and disclosures (annual and quarterly reports, SEC 

filings), financial news and analysis (articles and news 

updates, analyst reports), corporate communications (earnings 

call transcripts, press releases), and legal documents (contracts 

and agreements, legal proceedings). 

 

Numerical data includes—market data (stock prices, 

indices, exchange rates, commodities prices), financial 

statements (balance sheets, income statements, cash flow 

statements), economic data (GDP figures, employment 

statistics, consumer and producer prices), trading data 

(transaction data, order book data), derivative data (options 

and futures), and credit data (credit scores and ratings, loan 

and mortgage data).  

2.2 Datasets 

The Pile (184B tokens)—The pile is favored for its extensive 

data cleaning and preprocessing. It covers numerous domains, 

so we can pick and choose. It contains deliberate duplications 
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to reflect content quality so de-duplication will significantly 

reduces size. We can train the tokenizer on this dataset. 

 

C4  (138B tokens)—Supports different processing compared 

to The Pile. Noted for high-quality natural language content 

and a diverse web domain distribution, though it includes a 

substantial amount of patent-related data. 

 

Wikipedia (24B tokens)—Can include up-to-date English 

Wikipedia pages (as of July 1, 2022) to ensure the factuality 

of the model. The Wikipedia data, characterized by a higher-

than-average markup reflected in its inefficient tokenization, 

suggests potential areas for improvement in data cleaning for 

future training. 

 

Polygon API—A robust financial data platform that furnishes 

a comprehensive array of real-time and historical data across 

various asset classes, including stocks, Forex, and 

cryptocurrencies, catering to the needs of developers, financial 

analysts, and traders. It provides crucial real-time market data 

such as price updates, trade details, and quote data, alongside 

historical market data essential for backtesting trading 

strategies and conducting thorough financial analyses. The 

API encompasses a wide range of data points from stock 

prices to corporate earnings, and detailed transaction data for 

cryptocurrencies, ensuring depth and breadth in market 

coverage. Additionally, it aggregates data from multiple 

sources to deliver accurate market insights and supports real-

time data needs through WebSocket technology for high-

frequency trading applications. Key data provided includes 

transaction-level ticks, aggregated bars, fundamental 

corporate data, comprehensive reference data, and potentially, 

sentiment analysis derived from various media sources. 

3 Implementation 

3.1 Architecture 

WatGPT is built upon a hybrid architecture that 

incorporates elements of SSMs, RWKV RNNs, and 

Transformers. This design allows it to effectively process and 

analyze long sequences of financial data (SSM), manage high-

frequency updates (RWKV RNN), and understand complex 

financial reports (Transformer). 

 

3.1.1 Structured State Space (SSM) Models:  

SSMs are utilized for their efficiency in modeling long-term 

dependencies and handling continuous-time data, crucial for 

tasks such as long-term market prediction and risk assessment. 

The focus with SSMs is primarily on risk assessment, portfolio 

optimization, and long-term market predictions due to their 

ability to excel with large temporal relationships over 

extended periods. 

 

The model components include a state vector for representing 

the internal state of the system at some arbitrary time, an 

optional input vector which includes external inputs or control 

signals applied to the system, influencing state transitions, an 

output vector for observable outputs of the system, and a state 

transition function, which defines the evolution of the state 

vector, denoded commonly as the following:  

 

    𝑥𝑡 + 1 = A𝑥𝑡 + B𝑢𝑡 + 𝑤𝑡  

 

where 𝐴 is the state transition matrix, 𝐵 maps the control 

inputs to the state space, and 𝑤𝑡  is process noise. 

 

The output function can generally be described as:  

 

   𝑦𝑡 = C𝑥𝑡 + D𝑢𝑡 + 𝑣𝑡  

    

where 𝐶 is the output matrix, 𝐷 maps the control inputs 

directly to the outputs, and 𝑣𝑡 is observation noise. 

 

HiPPO Integration: We can leverage HiPPO in our SSM 

framework to improve on the state vector component. 

 

Polynomial State Representation—HiPPO transforms the 

state representation into a system where the state vector 

represents coefficients of a polynomial basis. This polynomial 

representation captures the dynamics of the system over 

continuous time, which is discretized for practical 

computation. 

 

State Transition Dynamics—The HiPPO approach modifies 

the traditional state transition matrix to implement an operator 

that projects the polynomial representation forward in time. 

This operator can handle rapid changes in input signals by 

dynamically adjusting the polynomial coefficients, thereby 

capturing both high-frequency components and long-range 

dependencies effectively. 

 

Memory and Computation—HiPPO provides a 

mathematical framework for efficiently computing the impact 

of historical data on the current state through its polynomial 

projection method. This aspect is crucial for efficiently 

managing memory and computation in models dealing with 

long input sequences. 

 

Learning and Adaptation—In a HiPPO-based SSM, 

learning involves optimizing the parameters that define the 

polynomial projection, which can be done through gradient-

based optimization techniques commonly used in machine 

learning. 

 

3.1.2 Receptance Weighted Key Value (RWKV) RNNs:                
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     RWKV RNNs enhance the model's ability to focus on 

relevant portions of data, improving computational efficiency 

and response accuracy, particularly beneficial for real-time 

trading algorithms. 

 

Input Layer: The input layer defines how the input data will 

be represented (e.g., for sequential data like text, use 

embeddings to convert input tokens into dense vectors). 

 

RNN Layer: The RNN layer defines the type of neural 

network cells used for computation and learning in the 

recurrent layer (e.g., LSTM, GRU). These cells should be 

capable of maintaining long-term dependencies.  

 

Attention Module & Receptance: Each input token (or 

feature vector) at a position is transformed into three vectors: 

a key vector K, a query vector 𝑄, and a value vector 𝑉, which 

are typically achieved through linear projection 

(multiplication by a trained weight matrix).   

 

The attention score between a query and all keys is computed, 

often using the dot product, followed by a softmax operation 

to normalize the scores. The equation is generally given by: 

 

Attention(Q, K, V) = softmax(
Q𝐾𝑇

√𝑑𝑘

)V 

where 𝑑𝑘 is the dimensionality of the key vectors, used to scale 

the dot products to prevent extremely large values due to high 

dimensionality. 

 

If we conceptualize "receptance" as a measure of relevance or 

responsiveness of the keys to the query, this could imply an 

additional weighting mechanism in the attention calculation.  

 

We can define a "receptance" weight for each key, which 

quantifies its importance or relevance in the context being 

modeled, and integrate the receptance weights directly into the 

attention scores computation:  

Attention(Q, K, V, R) = softmax(
Q𝐾𝑇 + 𝑅

√𝑑𝑘

)V 

where 𝑅 represents the matrix of receptance weights added to 

the dot product of the queries and keys. 

 

Output Layer: Define the output layer based on the task (e.g., 

a softmax layer for classification). 

 

3.1.3 Transformers:  

     The Transformer architecture provides robust performance 

in understanding and generating natural language, aiding in 

tasks like sentiment analysis and regulatory compliance. 

 

Tokenization: The tokenizer is a common component found 

in systems where text pre-processing is essential (LLMs, 

compilers, etc) and is required for us as we preferablyw ant to 

pre-process the text from user prior to sending it into the 

transformer.  

 

There are a few production-ready algorithms used today. 

Some examples include WordPiece and SentencePiece.  

 

WordPiece—A tokenization algorithm that breaks text down 

into a set of known words, and for out-of-vocabulary words, it 

further breaks them down into subwords or word pieces. The 

algorithm starts with a base vocabulary of individual 

characters and iteratively adds the most beneficial token 

(combination of characters or character sequences) to the 

vocabulary based on certain criteria, such as maximizing the 

likelihood of the training data. WordPiece is notably used in 

models like BERT (Bidirectional Encoder Representations 

from Transformers) and others in the Transformer family.  

  

SentencePiece—A tokenization library that treats the input 

text as a raw stream of Unicode characters and directly learns 

subword units (tokens) from this text. Unlike WordPiece, 

SentencePiece does not require pre-tokenization of the text 

into words. SentencePiece supports two subword algorithms: 

Byte Pair Encoding (BPE) and Unigram Language Model. It 

learns subword tokens directly from the raw text, considering 

the entire text sequence, which allows it to capture information 

beyond word boundaries. SentencePiece allows for a more 

flexible tokenization that is not biased by pre-existing notions 

of "words" and is effective across languages with different 

characteristics. It also simplifies the preprocessing pipeline by 

eliminating the need for language-specific tokenization rules. 

 

There is also prevalence of succesful tokenizer 

implementations that do not use WordPiece or SentencePiece 

and instead use a Unigram tokenizer, which is followed by the 

demonstrated efficacy in studies such as Kudo and Richardson 

(2018) and Bostrom and Durrett (2020). Mirroring the 

approach used by GPT-2 (Radford et al., 2019), the model 

processes data at the byte level, recognizing each of the 256 

possible byte values as distinct tokens. This methodology 

enhances the handling of diverse data formats, from plain text 

to binary data, by treating them uniformly as sequences of 

byte-level tokens. 

 

The tokenization process involves a pretokenization step 

where byte sequences are segmented according to intricate 

regular expressions, some examples being: 

 

[𝐴 − 𝑍𝑎 − 𝑧] + |[0 − 9]|[^𝐴 − 𝑍𝑎 − 𝑧0 − 9] + 

 

′(? : [𝑠𝑑𝑚𝑡]|𝑙𝑙|𝑣𝑒|𝑟𝑒)| ?\𝑝{𝐿} + | ?\𝑝{𝑁} + | ? [^\𝑠\𝑝{𝐿}\𝑝{𝑁}]

+ |\𝑠 + (? !\𝑆)|\𝑠 + 
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′(? 𝑖: [𝑠𝑑𝑚𝑡]|𝑙𝑙|𝑣𝑒|𝑟𝑒)|[^\𝑟\𝑛\𝑝{𝐿}\𝑝{𝑁}]? +\𝑝{𝐿}

+ |\𝑝{𝑁}{1,3}| ? [^\𝑠\𝑝{𝐿}\𝑝{𝑁}] + +[\𝑟\𝑛]

∗ |\𝑠 ∗ [\𝑟\𝑛]|\𝑠 + (? !\𝑆)|\𝑠 + 

 

which separates different character classes and includes 

spaces within alphabetic chunks to allow the formation of 

multi-word tokens.  

 

Decoder-Only Design: A decoder-only architecture is 

sufficient because there is no need to encode data during pre-

processing.  

 

Due to this design, the attention mechanism is referred to as 

"causal" or "masked" self-attention because it prevents 

positions from attending to subsequent positions in the 

sequence, ensuring that the generation of an output element 

can only depend on known outputs.  

 

Embeddings: The input text is converted into embeddings, 

which are dense vector representations that capture the 

semantic properties of the words. Although positional 

encodings can be added to embeddings to provide the model 

with information about the order of words in the sequence,  

 

positional embeddings are not used for WatGPT for several 

reasons—the nature of the task does not require positional 

encodings, namely, due to the lack of order significance in 

text, it implies that it is simpler without them.  

 

Formally—the initial representations 𝐻0 are derived using an 

embedding matrix 𝑊𝑒𝑚 and a standard basis vector 𝑒𝑥𝑡  for 

each token index 𝑥𝑡, followed by LayerNorm (LNem) 

application: 

 

ℎ0
𝑡̅̅ ̅ = 𝑊em𝑒𝑥𝑡

 ∀𝑡 

ℎ0
𝑡 = LNem(ℎ0

𝑡̅̅ ̅) ∀𝑡 

 

No positional embeddings are applied, considering the 

functionality of ALiBi. 

 

Layers: The decoder architecture comprises multiple layers, 

where each layer includes a self attention mechanism and feed 

forward network—for weighing the importance of different 

words in the input sequence relative to each other, for 

introducing non-linearity, and for enabling the model to learn 

complex patterns and relationships beyond the attention 

mechanism.  

 

Formally—Each layer 𝑙 in the model updates the sequence 

representation 𝐻𝑙  using SelfAttention (SA) and FeedForward 

Network (FFN), combined with residual connections and 

LayerNorm applications: 

 

𝐻ℓ̅̅̅̅ = 𝐻ℓ−1 + 𝑆𝐴ℓ (LNin
ℓ (𝐻ℓ−1))  ∀ℓ 

𝐻ℓ = 𝐻ℓ̅̅̅̅ + FFNℓ (LNat
ℓ (𝐻ℓ̅̅̅̅ ))  ∀ℓ 

 

Self-Attention: ALiBi (Attention with Linear Biases) will be 

used in the self-attention component. It modifies traditional 

self-attention by introducing a linear bias based on the 

distance between token positions, reducing attention to distant 

tokens and enhancing focus on nearby tokens. This is achieved 

through a bias term   

 

b(i, j) = −γ ∣ i − j ∣ 

 

where γ is a scaling factor. 

 

This modification simplifies the implementation as the bias is 

directly incorporated into the attention scores before the 

softmax operation, without the need for learning additional 

parameters. 

 

More formally—SelfAttention is computed for each attention 

head 𝑛, where queries 𝑄, keys 𝐾, and values 𝑉 are derived 

from the input, adjusted by learned biases, and combined with 

a distance-based ALiBi matrix 𝐴𝑛 to focus attention based on 

token proximity: 

 

𝑄𝑛 =  𝑊𝑛,𝑞
ℓ 𝑋 +  𝑏𝑛,𝑞

ℓ      ∀𝑛 

𝐾𝑛 =  𝑊𝑛,𝑘
ℓ 𝑋 +  𝑏𝑛,𝑘

ℓ      ∀𝑛 

𝑉𝑛 =  𝑊𝑛,𝑣
ℓ 𝑋 + 𝑏𝑛,𝑣

ℓ       ∀𝑛 

𝑆𝑛
̅̅ ̅ = 𝐴𝑛 +

𝐾𝑛
⊤𝑄𝑛

√𝐷𝑛

 ∀𝑛 

𝑆𝑛 = 𝑑𝑟𝑜𝑝𝑝𝑎𝑡
(softmax(𝑆𝑛

̅̅ ̅ ⊙ 𝑀)) ∀𝑛 

𝑌𝑛
̅̅̅ = 𝑉𝑛𝑆𝑛 ∀𝑛 

𝑌 = 𝑑𝑟𝑜𝑝𝑝ℎ
(∑ 𝑈𝑛

ℓ

𝑁

𝑛=1

𝑌𝑛
̅̅̅ + 𝑐ℓ) 

 

Feed Forward Network: The Feed-Forward Network (FFN), 

structured as a multi-layer perceptron (MLP), consists of two 

fully connected layers with a non-linear activation function, 

commonly ReLU or GELU. This FFN processes input features 

independently at each sequence position, enabling the 

transformation of self-attention outputs into more complex 

patterns. Each FFN is uniquely parameterized for every 

position, ensuring tailored and detailed feature processing 

without weight sharing across positions. 

 

Formally—The FFN component applies a GELU activation to 

the linearly transformed input, followed by dropout and 

another linear transformation: 

 

ℎ = gelu(𝑊𝑓
ℓ𝑥 + 𝑏𝑓

ℓ) 
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𝑦 = 𝑑𝑟𝑜𝑝𝑝𝑓
(𝑈𝑓

ℓℎ + 𝑐𝑓
ℓ) 

 

Normalization: Layer Normalization (LayerNorm) 

significantly enhances training by normalizing input features 

independently across each sample, reducing internal covariate 

shift, and mitigating issues related to initial weight settings. 

This normalization facilitates the use of higher learning rates, 

supports the training of deeper networks, and reduces batch 

size dependency, promoting faster convergence and more 

stable learning. LayerNorm is implemented by computing the 

mean 𝜇 and standard deviation 𝜎 for each layer's inputs, then 

normalizing and scaling the outputs as follows: 

 

𝑦 =  
𝑥 −  𝜇 

𝜎
 γ −  β 

 

Here, γ and β are learnable parameters that adjust the scale 

and shift of the normalized data, ensuring flexibility in the 

model's feature representation. This mechanism is applied 

before each sub-layer within the Transformer architecture. 

 

More formally—LayerNorm normalizes the layer outputs 

using mean 𝜇(𝑥) and variance 𝜎2(𝑥), scaled and shifted by 

trainable parameters 𝛾 and 𝛽: 

 

𝑦 = LNθ(𝑥) =
𝑥 − μ(𝑥)

√σ2(𝑥) + ϵ
⊙ γθ + βθ 

3.2 Model Size 

3.2.1 How do we determine model size? 

     We can use the Chinchilla scaling laws to help us 

determine the most optimal model size (for the models this 

applies to) depending on the anount of data we have and the 

training bandwidth (time and computational resources) we 

have.  

 

The Chinchilla laws refer to research findings that optimize 

the trade-off between the size of a language model and the 

amount of training data used, particularly focusing on the 

effectiveness of model training relative to computational 

efficiency. This approach was developed based on empirical 

evidence showing that larger models do not always yield 

proportionally better performance unless paired with enough 

training data. 

 

These laws suggest that beyond a certain model size, the 

benefits of adding more parameters diminish unless 

significantly more training data is used. Furthermore, the goal 

is to maximize performance per unit of computational 

resource (e.g., FLOPs) by adjusting this ratio. 

 

3.2.2 How do we determine tokenizer vocabulary size? 

     The tokenizer vocabulary size will depend on the dataset 

for training (The Pile, C4, etc), the tokenization algorithm 

used (BPE, Unigram, etc), and several other constraints. More 

outlined below.  

 

Tokenizer Implementation and Scaling: Depending on the 

tokenizer design and dataset, different approaches can be 

adopted. There are no conclusions on the tokenizer training 

dataset and tokenizer design yet, but most likely a split and 

merge approach will be adopted where the training dataset is 

divided into 𝑁 chunks for each of the 𝐷 domains, resulting in 

𝑇 chunks in total. We can deduce the vocabulary size after 

determining 𝑁, 𝐷 and 𝑇. 

 

Tokenizer Hierarchy: Due to the split and merge approach, 

individual tokenizers trained on each chunk will be 

hierarchically merged to form a comprehensive tokenizer.  

 

Merging Strategy and Vocabulary Adjustment: The 

merging of tokenizers is based on a weighted average of the 

probability distributions of tokens from each tokenizer, where 

weights are determined by the relative sizes of the data 

chunks. After merging, the tokenizer has a vocabulary of 𝑉 

tokens (𝑉 should be deduceable from the parameters specified 

earlier). To manage this size and optimize performance, 

tokens with the smallest probabilities are dropped to reduce 

the vocabulary to 𝑉′. Additionally, we may also add bytes that 

don't occur in the Pile and an <|endoftext|> token to ensure no 

out-of-vocabulary tokens. 

 

Vocabulary Size Considerations: A larger vocabulary 

allows more information to be captured within the context 

window of the model, enhancing the detail and specificity of 

tokenization. However, it also increases the overhead due to a 

larger proportion of model parameters dedicated to token 

embeddings. The optimal vocabulary size is determined 

through experiments where the total encoded size (in bytes) of 

other datasets is minimized based on the vocabulary size 𝑉′. 

3.3 Scaling Techniques 

3.3.1 Scaling the SSM: 

     Scaling Structured State Space (SSM) models to handle 

large workloads effectively involves several key strategies 

that focus on computational efficiency, parallel processing, 

and optimization of memory usage. More below.  

 

Fast Fourier Transform (FFT):  

Utilize FFT-based algorithms for operations that involve 

polynomials or sequences, as FFT can efficiently compute 

convolutions used in the state transitions of SSMs. 
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Low Rank Approximations: Use low-rank approximations 

for matrices involved in the state space transformations to 

reduce computation and storage costs. 

 

3.3.2 Scaling the RWKV RNN:  

     Scaling the RWKV RNN model to handle large workloads 

involves strategies revolving around computation and 

attention. More below.  

 

Sparse Computations: RWKV involves weighted attention 

mechanisms that can be made sparse. Focus on optimizing 

these attention computations by leveraging sparsity for 

efficiency.   

 

Attention Optimization: Optimize the attention mechanism 

in RWKV by reducing the complexity of key-value 

computations or by using techniques like low-rank 

approximations to make the computation of attention scores 

less resource-intensive. 

 

3.3.3 Scaling the Tokenizer:  

      Scaling a tokenizer to handle large workloads, especially 

when used in conjunction with Transformer models, involves 

optimizing the tokenizer's efficiency, capacity, and throughput 

to manage extensive and complex datasets efficiently. More 

below. 

 

Efficient Tokenization Logic: Choose tokenization 

algorithms that are inherently efficient and quick to execute, 

such as Unigram, Byte-Pair Encoding (BPE), or WordPiece. 

Optimize these algorithms by refining their implementation to 

reduce computational overhead. 

 

3.3.4 Scaling the Transformer:  

     Scaling a Transformer model to handle large workloads 

effectively involves a combination of architectural decisions, 

efficient computation practices, and infrastructure 

optimization. More below.  

 

Model Pruning: Reduce the size of the Transformer by 

pruning less important weights or attention heads. This can 

significantly reduce computational requirements without a 

substantial loss in performance. 

 

Model Quantization: Apply quantization techniques to 

reduce the precision of the weights from floating points to 

integers, which decreases model size and speeds up 

computation. 

 

Knowledge Distillation: Train a smaller, more efficient 

"student" model that learns to mimic a larger "teacher" model. 

This approach can retain much of the performance of the 

larger model but with fewer resources. 

 

Sparse Attention Mechanisms: Implement variants of the 

attention mechanism that reduce complexity, such as 

Longformer’s windowed or global attention, or BigBird’s 

block-sparse attention, which can handle longer sequences 

more efficiently. 

 

Low-Rank Factorization: Use matrix factorization 

techniques to approximate attention layers, reducing the 

number of computations needed. 

 

3.3.5 Common Machine Learning Scaling Techniques: 

Below we will describe some common scaling techniques that 

can be used for 1 or more of the model architectures. 

 

Parameter Sharing: Implement parameter sharing across 

different parts of the model to reduce the number of unique 

parameters that need to be updated and stored during training. 

 

Batch processing and normalization: Implement mini-batch 

training to process multiple instances of data simultaneously, 

which can optimize the use of computational resources and 

reduce training time. Also incorporate batch normalization 

techniques to maintain numerical stability and improve the 

convergence rate during training. 

 

Memory management: Use checkpointing strategies during 

training to save and restore model states periodically, thus 

managing memory usage more effectively and allowing for 

recovery in case of interruptions. 

 

Memory optimization: Implement techniques such as 

gradient checkpointing and activation recomputation during 

backpropagation to reduce memory overhead at the cost of 

additional computations. 

 

Data Access: Implement an efficient data loading and 

preprocessing pipeline to ensure that data feeding does not 

become a bottleneck. Cache frequently accessed data in 

memory to speed up data retrieval operations during model 

training. 

 

Asynchronous Updates: Implement asynchronous gradient 

updates where possible, which can speed up training by 

allowing different parts of the model to be updated 

independently without waiting for a global synchronization, 

useful in distributed settings. 

 

Hardware: Leverage GPU/TPU clusters which are optimized 

for parallel processing of large-scale matrix operations typical 

in any of the models above. In synergy, utilize distributed 

computing strategies to train the model across multiple 
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machines, effectively partitioning the workload. (NEED TO 

DISCUSS WITH LEADS ON HARDWARE) 

4 Training 

To be determined.  

5 Evaluations  

To be determined.  

6 Future Work 

Future work will focus on expanding the model’s 

capabilities to additional financial sectors, if possible, and 

further refining its ability to interact with and enhance in-

house models. 

7 Conclusion 

WatGPT epitomizes a concerted effort to harness the 

transformative potential of large language models in 

quantitative finance. By delineating clear project goals, 

aligning model architectures with specific tasks, and fostering 

a nuanced understanding of model efficiency, this endeavor 

lays the groundwork for a paradigm shift in algorithmic 

trading, risk management, portfolio optimization, and several 

other finance tasks. 
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