
IOP Publishing WatGPT: A Quant-Based LLM

Journal XX (XXXX) XXXXXX https://doi.org/XXXX/XXXX

xxxx-xxxx/xx/xxxxxx 1 © xxxx IOP Publishing Ltd

WatGPT: A Quant-Based LLM

Abstract

In this paper, we introduce WatGPT, a specialized Large Language Model (LLM) designed for handling a range of

quantitative finance tasks. Leveraging the latest advancements in model architectures such as Structured State Spaces (SSMs),

Receptance Weighted Key Value (RWKV) RNNs, and traditional Transformers, WatGPT aims to provide robust solutions for

tasks including portfolio optimization, risk management, and algorithmic trading. Unlike general-purpose models, WatGPT

integrates domain-specific knowledge, which significantly enhances its performance on specialized tasks.

Keywords: WatGPT, Large Language Model (LLM), Quantitative Finance, NLP (Natural Language Processing), Financial

Analysis, Risk Management, Algorithmic Trading, Structured State Spaces (SSMs), Receptance Weighted Key Value (RWKV)

RNNs, Transformers, HiPPO

1 Introduction

The integration of NLP technologies in financial

applications has seen exponential growth, driven by the

capabilities of LLMs to understand and generate human-like

text. However, the unique challenges of the financial

domain—such as the need for precise risk assessment and

real-time decision-making—demand specialized solutions.

WatGPT is designed to address these challenges by

incorporating financial domain expertise directly into its

architecture and training process, offering improved accuracy

and efficiency on finance-specific tasks.

1.1 Project Scope and Goals

The development of WatGPT was guided by the need to

create a more focused and effective tool for financial analysis

and decision-making. The primary objectives for WatGPT

include code adaptation—adjusting the code of in-house

models to better suit specified tasks, either through direct

modifications by user command or by autonomously adapting

to fulfill task requirements, and finance advisory—providing

expert financial advice through a conversational model that

leverages in-house models and data, focusing on user queries

and contextual understanding.

Given the broad potential applications and the importance

of maintaining manageable scope, the project emphasizes the

creation of a model that integrates seamlessly with existing

financial analysis tools and datasets. It focuses on a large-

language model that plays the role of an expert financial

advisor and helper. Code adaptation was neglected as core

functionality of this model for several reasons—the LLM

would require new architecture for code-style corpus, the

LLM would not be as strong in the financial domain, and a

code synthesizer model could be well achieved through a

separate, better tailored model for our needs. As a result,

separate projects exist for code adaption and data

augmentation.

2 Dataset

2.1 Data Criterion

WatGPT should be trained on solely finance and

quantitative text and numerical data, as we want to constraint

the pre-context of the LLM to these two realms.

Textual data includes any of the following—regulatory

filings and disclosures (annual and quarterly reports, SEC

filings), financial news and analysis (articles and news

updates, analyst reports), corporate communications (earnings

call transcripts, press releases), and legal documents (contracts

and agreements, legal proceedings).

Numerical data includes—market data (stock prices,

indices, exchange rates, commodities prices), financial

statements (balance sheets, income statements, cash flow

statements), economic data (GDP figures, employment

statistics, consumer and producer prices), trading data

(transaction data, order book data), derivative data (options

and futures), and credit data (credit scores and ratings, loan

and mortgage data).

2.2 Datasets

The Pile (184B tokens)—The pile is favored for its extensive

data cleaning and preprocessing. It covers numerous domains,

so we can pick and choose. It contains deliberate duplications

Journal XX (XXXX) XXXXXX Adavan, Reshi

 2

to reflect content quality so de-duplication will significantly

reduces size. We can train the tokenizer on this dataset.

C4 (138B tokens)—Supports different processing compared

to The Pile. Noted for high-quality natural language content

and a diverse web domain distribution, though it includes a

substantial amount of patent-related data.

Wikipedia (24B tokens)—Can include up-to-date English

Wikipedia pages (as of July 1, 2022) to ensure the factuality

of the model. The Wikipedia data, characterized by a higher-

than-average markup reflected in its inefficient tokenization,

suggests potential areas for improvement in data cleaning for

future training.

Polygon API—A robust financial data platform that furnishes

a comprehensive array of real-time and historical data across

various asset classes, including stocks, Forex, and

cryptocurrencies, catering to the needs of developers, financial

analysts, and traders. It provides crucial real-time market data

such as price updates, trade details, and quote data, alongside

historical market data essential for backtesting trading

strategies and conducting thorough financial analyses. The

API encompasses a wide range of data points from stock

prices to corporate earnings, and detailed transaction data for

cryptocurrencies, ensuring depth and breadth in market

coverage. Additionally, it aggregates data from multiple

sources to deliver accurate market insights and supports real-

time data needs through WebSocket technology for high-

frequency trading applications. Key data provided includes

transaction-level ticks, aggregated bars, fundamental

corporate data, comprehensive reference data, and potentially,

sentiment analysis derived from various media sources.

3 Implementation

3.1 Architecture

WatGPT is built upon a hybrid architecture that

incorporates elements of SSMs, RWKV RNNs, and

Transformers. This design allows it to effectively process and

analyze long sequences of financial data (SSM), manage high-

frequency updates (RWKV RNN), and understand complex

financial reports (Transformer).

3.1.1 Structured State Space (SSM) Models:

SSMs are utilized for their efficiency in modeling long-term

dependencies and handling continuous-time data, crucial for

tasks such as long-term market prediction and risk assessment.

The focus with SSMs is primarily on risk assessment, portfolio

optimization, and long-term market predictions due to their

ability to excel with large temporal relationships over

extended periods.

The model components include a state vector for representing

the internal state of the system at some arbitrary time, an

optional input vector which includes external inputs or control

signals applied to the system, influencing state transitions, an

output vector for observable outputs of the system, and a state

transition function, which defines the evolution of the state

vector, denoded commonly as the following:

 𝑥𝑡 + 1 = A𝑥𝑡 + B𝑢𝑡 + 𝑤𝑡

where 𝐴 is the state transition matrix, 𝐵 maps the control

inputs to the state space, and 𝑤𝑡 is process noise.

The output function can generally be described as:

 𝑦𝑡 = C𝑥𝑡 + D𝑢𝑡 + 𝑣𝑡

where 𝐶 is the output matrix, 𝐷 maps the control inputs

directly to the outputs, and 𝑣𝑡 is observation noise.

HiPPO Integration: We can leverage HiPPO in our SSM

framework to improve on the state vector component.

Polynomial State Representation—HiPPO transforms the

state representation into a system where the state vector

represents coefficients of a polynomial basis. This polynomial

representation captures the dynamics of the system over

continuous time, which is discretized for practical

computation.

State Transition Dynamics—The HiPPO approach modifies

the traditional state transition matrix to implement an operator

that projects the polynomial representation forward in time.

This operator can handle rapid changes in input signals by

dynamically adjusting the polynomial coefficients, thereby

capturing both high-frequency components and long-range

dependencies effectively.

Memory and Computation—HiPPO provides a

mathematical framework for efficiently computing the impact

of historical data on the current state through its polynomial

projection method. This aspect is crucial for efficiently

managing memory and computation in models dealing with

long input sequences.

Learning and Adaptation—In a HiPPO-based SSM,

learning involves optimizing the parameters that define the

polynomial projection, which can be done through gradient-

based optimization techniques commonly used in machine

learning.

3.1.2 Receptance Weighted Key Value (RWKV) RNNs:

Journal XX (XXXX) XXXXXX Adavan, Reshi

 3

 RWKV RNNs enhance the model's ability to focus on

relevant portions of data, improving computational efficiency

and response accuracy, particularly beneficial for real-time

trading algorithms.

Input Layer: The input layer defines how the input data will

be represented (e.g., for sequential data like text, use

embeddings to convert input tokens into dense vectors).

RNN Layer: The RNN layer defines the type of neural

network cells used for computation and learning in the

recurrent layer (e.g., LSTM, GRU). These cells should be

capable of maintaining long-term dependencies.

Attention Module & Receptance: Each input token (or

feature vector) at a position is transformed into three vectors:

a key vector K, a query vector 𝑄, and a value vector 𝑉, which

are typically achieved through linear projection

(multiplication by a trained weight matrix).

The attention score between a query and all keys is computed,

often using the dot product, followed by a softmax operation

to normalize the scores. The equation is generally given by:

Attention(Q, K, V) = softmax(
Q𝐾𝑇

√𝑑𝑘

)V

where 𝑑𝑘 is the dimensionality of the key vectors, used to scale

the dot products to prevent extremely large values due to high

dimensionality.

If we conceptualize "receptance" as a measure of relevance or

responsiveness of the keys to the query, this could imply an

additional weighting mechanism in the attention calculation.

We can define a "receptance" weight for each key, which

quantifies its importance or relevance in the context being

modeled, and integrate the receptance weights directly into the

attention scores computation:

Attention(Q, K, V, R) = softmax(
Q𝐾𝑇 + 𝑅

√𝑑𝑘

)V

where 𝑅 represents the matrix of receptance weights added to

the dot product of the queries and keys.

Output Layer: Define the output layer based on the task (e.g.,

a softmax layer for classification).

3.1.3 Transformers:

 The Transformer architecture provides robust performance

in understanding and generating natural language, aiding in

tasks like sentiment analysis and regulatory compliance.

Tokenization: The tokenizer is a common component found

in systems where text pre-processing is essential (LLMs,

compilers, etc) and is required for us as we preferablyw ant to

pre-process the text from user prior to sending it into the

transformer.

There are a few production-ready algorithms used today.

Some examples include WordPiece and SentencePiece.

WordPiece—A tokenization algorithm that breaks text down

into a set of known words, and for out-of-vocabulary words, it

further breaks them down into subwords or word pieces. The

algorithm starts with a base vocabulary of individual

characters and iteratively adds the most beneficial token

(combination of characters or character sequences) to the

vocabulary based on certain criteria, such as maximizing the

likelihood of the training data. WordPiece is notably used in

models like BERT (Bidirectional Encoder Representations

from Transformers) and others in the Transformer family.

SentencePiece—A tokenization library that treats the input

text as a raw stream of Unicode characters and directly learns

subword units (tokens) from this text. Unlike WordPiece,

SentencePiece does not require pre-tokenization of the text

into words. SentencePiece supports two subword algorithms:

Byte Pair Encoding (BPE) and Unigram Language Model. It

learns subword tokens directly from the raw text, considering

the entire text sequence, which allows it to capture information

beyond word boundaries. SentencePiece allows for a more

flexible tokenization that is not biased by pre-existing notions

of "words" and is effective across languages with different

characteristics. It also simplifies the preprocessing pipeline by

eliminating the need for language-specific tokenization rules.

There is also prevalence of succesful tokenizer

implementations that do not use WordPiece or SentencePiece

and instead use a Unigram tokenizer, which is followed by the

demonstrated efficacy in studies such as Kudo and Richardson

(2018) and Bostrom and Durrett (2020). Mirroring the

approach used by GPT-2 (Radford et al., 2019), the model

processes data at the byte level, recognizing each of the 256

possible byte values as distinct tokens. This methodology

enhances the handling of diverse data formats, from plain text

to binary data, by treating them uniformly as sequences of

byte-level tokens.

The tokenization process involves a pretokenization step

where byte sequences are segmented according to intricate

regular expressions, some examples being:

[𝐴 − 𝑍𝑎 − 𝑧] + |[0 − 9]|[^𝐴 − 𝑍𝑎 − 𝑧0 − 9] +

′(? : [𝑠𝑑𝑚𝑡]|𝑙𝑙|𝑣𝑒|𝑟𝑒)| ?\𝑝{𝐿} + | ?\𝑝{𝑁} + | ? [^\𝑠\𝑝{𝐿}\𝑝{𝑁}]

+ |\𝑠 + (? !\𝑆)|\𝑠 +

Journal XX (XXXX) XXXXXX Adavan, Reshi

 4

′(? 𝑖: [𝑠𝑑𝑚𝑡]|𝑙𝑙|𝑣𝑒|𝑟𝑒)|[^\𝑟\𝑛\𝑝{𝐿}\𝑝{𝑁}]? +\𝑝{𝐿}

+ |\𝑝{𝑁}{1,3}| ? [^\𝑠\𝑝{𝐿}\𝑝{𝑁}] + +[\𝑟\𝑛]

∗ |\𝑠 ∗ [\𝑟\𝑛]|\𝑠 + (? !\𝑆)|\𝑠 +

which separates different character classes and includes

spaces within alphabetic chunks to allow the formation of

multi-word tokens.

Decoder-Only Design: A decoder-only architecture is

sufficient because there is no need to encode data during pre-

processing.

Due to this design, the attention mechanism is referred to as

"causal" or "masked" self-attention because it prevents

positions from attending to subsequent positions in the

sequence, ensuring that the generation of an output element

can only depend on known outputs.

Embeddings: The input text is converted into embeddings,

which are dense vector representations that capture the

semantic properties of the words. Although positional

encodings can be added to embeddings to provide the model

with information about the order of words in the sequence,

positional embeddings are not used for WatGPT for several

reasons—the nature of the task does not require positional

encodings, namely, due to the lack of order significance in

text, it implies that it is simpler without them.

Formally—the initial representations 𝐻0 are derived using an

embedding matrix 𝑊𝑒𝑚 and a standard basis vector 𝑒𝑥𝑡 for

each token index 𝑥𝑡, followed by LayerNorm (LNem)

application:

ℎ0
𝑡̅̅ ̅ = 𝑊em𝑒𝑥𝑡

 ∀𝑡

ℎ0
𝑡 = LNem(ℎ0

𝑡̅̅ ̅) ∀𝑡

No positional embeddings are applied, considering the

functionality of ALiBi.

Layers: The decoder architecture comprises multiple layers,

where each layer includes a self attention mechanism and feed

forward network—for weighing the importance of different

words in the input sequence relative to each other, for

introducing non-linearity, and for enabling the model to learn

complex patterns and relationships beyond the attention

mechanism.

Formally—Each layer 𝑙 in the model updates the sequence

representation 𝐻𝑙 using SelfAttention (SA) and FeedForward

Network (FFN), combined with residual connections and

LayerNorm applications:

𝐻ℓ̅̅̅̅ = 𝐻ℓ−1 + 𝑆𝐴ℓ (LNin
ℓ (𝐻ℓ−1)) ∀ℓ

𝐻ℓ = 𝐻ℓ̅̅̅̅ + FFNℓ (LNat
ℓ (𝐻ℓ̅̅̅̅)) ∀ℓ

Self-Attention: ALiBi (Attention with Linear Biases) will be

used in the self-attention component. It modifies traditional

self-attention by introducing a linear bias based on the

distance between token positions, reducing attention to distant

tokens and enhancing focus on nearby tokens. This is achieved

through a bias term

b(i, j) = −γ ∣ i − j ∣

where γ is a scaling factor.

This modification simplifies the implementation as the bias is

directly incorporated into the attention scores before the

softmax operation, without the need for learning additional

parameters.

More formally—SelfAttention is computed for each attention

head 𝑛, where queries 𝑄, keys 𝐾, and values 𝑉 are derived

from the input, adjusted by learned biases, and combined with

a distance-based ALiBi matrix 𝐴𝑛 to focus attention based on

token proximity:

𝑄𝑛 = 𝑊𝑛,𝑞
ℓ 𝑋 + 𝑏𝑛,𝑞

ℓ ∀𝑛

𝐾𝑛 = 𝑊𝑛,𝑘
ℓ 𝑋 + 𝑏𝑛,𝑘

ℓ ∀𝑛

𝑉𝑛 = 𝑊𝑛,𝑣
ℓ 𝑋 + 𝑏𝑛,𝑣

ℓ ∀𝑛

𝑆𝑛
̅̅ ̅ = 𝐴𝑛 +

𝐾𝑛
⊤𝑄𝑛

√𝐷𝑛

 ∀𝑛

𝑆𝑛 = 𝑑𝑟𝑜𝑝𝑝𝑎𝑡
(softmax(𝑆𝑛

̅̅ ̅ ⊙ 𝑀)) ∀𝑛

𝑌𝑛
̅̅̅ = 𝑉𝑛𝑆𝑛 ∀𝑛

𝑌 = 𝑑𝑟𝑜𝑝𝑝ℎ
(∑ 𝑈𝑛

ℓ

𝑁

𝑛=1

𝑌𝑛
̅̅̅ + 𝑐ℓ)

Feed Forward Network: The Feed-Forward Network (FFN),

structured as a multi-layer perceptron (MLP), consists of two

fully connected layers with a non-linear activation function,

commonly ReLU or GELU. This FFN processes input features

independently at each sequence position, enabling the

transformation of self-attention outputs into more complex

patterns. Each FFN is uniquely parameterized for every

position, ensuring tailored and detailed feature processing

without weight sharing across positions.

Formally—The FFN component applies a GELU activation to

the linearly transformed input, followed by dropout and

another linear transformation:

ℎ = gelu(𝑊𝑓
ℓ𝑥 + 𝑏𝑓

ℓ)

Journal XX (XXXX) XXXXXX Adavan, Reshi

 5

𝑦 = 𝑑𝑟𝑜𝑝𝑝𝑓
(𝑈𝑓

ℓℎ + 𝑐𝑓
ℓ)

Normalization: Layer Normalization (LayerNorm)

significantly enhances training by normalizing input features

independently across each sample, reducing internal covariate

shift, and mitigating issues related to initial weight settings.

This normalization facilitates the use of higher learning rates,

supports the training of deeper networks, and reduces batch

size dependency, promoting faster convergence and more

stable learning. LayerNorm is implemented by computing the

mean 𝜇 and standard deviation 𝜎 for each layer's inputs, then

normalizing and scaling the outputs as follows:

𝑦 =
𝑥 − 𝜇

𝜎
 γ − β

Here, γ and β are learnable parameters that adjust the scale

and shift of the normalized data, ensuring flexibility in the

model's feature representation. This mechanism is applied

before each sub-layer within the Transformer architecture.

More formally—LayerNorm normalizes the layer outputs

using mean 𝜇(𝑥) and variance 𝜎2(𝑥), scaled and shifted by

trainable parameters 𝛾 and 𝛽:

𝑦 = LNθ(𝑥) =
𝑥 − μ(𝑥)

√σ2(𝑥) + ϵ
⊙ γθ + βθ

3.2 Model Size

3.2.1 How do we determine model size?

 We can use the Chinchilla scaling laws to help us

determine the most optimal model size (for the models this

applies to) depending on the anount of data we have and the

training bandwidth (time and computational resources) we

have.

The Chinchilla laws refer to research findings that optimize

the trade-off between the size of a language model and the

amount of training data used, particularly focusing on the

effectiveness of model training relative to computational

efficiency. This approach was developed based on empirical

evidence showing that larger models do not always yield

proportionally better performance unless paired with enough

training data.

These laws suggest that beyond a certain model size, the

benefits of adding more parameters diminish unless

significantly more training data is used. Furthermore, the goal

is to maximize performance per unit of computational

resource (e.g., FLOPs) by adjusting this ratio.

3.2.2 How do we determine tokenizer vocabulary size?

 The tokenizer vocabulary size will depend on the dataset

for training (The Pile, C4, etc), the tokenization algorithm

used (BPE, Unigram, etc), and several other constraints. More

outlined below.

Tokenizer Implementation and Scaling: Depending on the

tokenizer design and dataset, different approaches can be

adopted. There are no conclusions on the tokenizer training

dataset and tokenizer design yet, but most likely a split and

merge approach will be adopted where the training dataset is

divided into 𝑁 chunks for each of the 𝐷 domains, resulting in

𝑇 chunks in total. We can deduce the vocabulary size after

determining 𝑁, 𝐷 and 𝑇.

Tokenizer Hierarchy: Due to the split and merge approach,

individual tokenizers trained on each chunk will be

hierarchically merged to form a comprehensive tokenizer.

Merging Strategy and Vocabulary Adjustment: The

merging of tokenizers is based on a weighted average of the

probability distributions of tokens from each tokenizer, where

weights are determined by the relative sizes of the data

chunks. After merging, the tokenizer has a vocabulary of 𝑉

tokens (𝑉 should be deduceable from the parameters specified

earlier). To manage this size and optimize performance,

tokens with the smallest probabilities are dropped to reduce

the vocabulary to 𝑉′. Additionally, we may also add bytes that

don't occur in the Pile and an <|endoftext|> token to ensure no

out-of-vocabulary tokens.

Vocabulary Size Considerations: A larger vocabulary

allows more information to be captured within the context

window of the model, enhancing the detail and specificity of

tokenization. However, it also increases the overhead due to a

larger proportion of model parameters dedicated to token

embeddings. The optimal vocabulary size is determined

through experiments where the total encoded size (in bytes) of

other datasets is minimized based on the vocabulary size 𝑉′.

3.3 Scaling Techniques

3.3.1 Scaling the SSM:

 Scaling Structured State Space (SSM) models to handle

large workloads effectively involves several key strategies

that focus on computational efficiency, parallel processing,

and optimization of memory usage. More below.

Fast Fourier Transform (FFT):

Utilize FFT-based algorithms for operations that involve

polynomials or sequences, as FFT can efficiently compute

convolutions used in the state transitions of SSMs.

Journal XX (XXXX) XXXXXX Adavan, Reshi

 6

Low Rank Approximations: Use low-rank approximations

for matrices involved in the state space transformations to

reduce computation and storage costs.

3.3.2 Scaling the RWKV RNN:

 Scaling the RWKV RNN model to handle large workloads

involves strategies revolving around computation and

attention. More below.

Sparse Computations: RWKV involves weighted attention

mechanisms that can be made sparse. Focus on optimizing

these attention computations by leveraging sparsity for

efficiency.

Attention Optimization: Optimize the attention mechanism

in RWKV by reducing the complexity of key-value

computations or by using techniques like low-rank

approximations to make the computation of attention scores

less resource-intensive.

3.3.3 Scaling the Tokenizer:

 Scaling a tokenizer to handle large workloads, especially

when used in conjunction with Transformer models, involves

optimizing the tokenizer's efficiency, capacity, and throughput

to manage extensive and complex datasets efficiently. More

below.

Efficient Tokenization Logic: Choose tokenization

algorithms that are inherently efficient and quick to execute,

such as Unigram, Byte-Pair Encoding (BPE), or WordPiece.

Optimize these algorithms by refining their implementation to

reduce computational overhead.

3.3.4 Scaling the Transformer:

 Scaling a Transformer model to handle large workloads

effectively involves a combination of architectural decisions,

efficient computation practices, and infrastructure

optimization. More below.

Model Pruning: Reduce the size of the Transformer by

pruning less important weights or attention heads. This can

significantly reduce computational requirements without a

substantial loss in performance.

Model Quantization: Apply quantization techniques to

reduce the precision of the weights from floating points to

integers, which decreases model size and speeds up

computation.

Knowledge Distillation: Train a smaller, more efficient

"student" model that learns to mimic a larger "teacher" model.

This approach can retain much of the performance of the

larger model but with fewer resources.

Sparse Attention Mechanisms: Implement variants of the

attention mechanism that reduce complexity, such as

Longformer’s windowed or global attention, or BigBird’s

block-sparse attention, which can handle longer sequences

more efficiently.

Low-Rank Factorization: Use matrix factorization

techniques to approximate attention layers, reducing the

number of computations needed.

3.3.5 Common Machine Learning Scaling Techniques:

Below we will describe some common scaling techniques that

can be used for 1 or more of the model architectures.

Parameter Sharing: Implement parameter sharing across

different parts of the model to reduce the number of unique

parameters that need to be updated and stored during training.

Batch processing and normalization: Implement mini-batch

training to process multiple instances of data simultaneously,

which can optimize the use of computational resources and

reduce training time. Also incorporate batch normalization

techniques to maintain numerical stability and improve the

convergence rate during training.

Memory management: Use checkpointing strategies during

training to save and restore model states periodically, thus

managing memory usage more effectively and allowing for

recovery in case of interruptions.

Memory optimization: Implement techniques such as

gradient checkpointing and activation recomputation during

backpropagation to reduce memory overhead at the cost of

additional computations.

Data Access: Implement an efficient data loading and

preprocessing pipeline to ensure that data feeding does not

become a bottleneck. Cache frequently accessed data in

memory to speed up data retrieval operations during model

training.

Asynchronous Updates: Implement asynchronous gradient

updates where possible, which can speed up training by

allowing different parts of the model to be updated

independently without waiting for a global synchronization,

useful in distributed settings.

Hardware: Leverage GPU/TPU clusters which are optimized

for parallel processing of large-scale matrix operations typical

in any of the models above. In synergy, utilize distributed

computing strategies to train the model across multiple

Journal XX (XXXX) XXXXXX Adavan, Reshi

 7

machines, effectively partitioning the workload. (NEED TO

DISCUSS WITH LEADS ON HARDWARE)

4 Training

To be determined.

5 Evaluations

To be determined.

6 Future Work

Future work will focus on expanding the model’s

capabilities to additional financial sectors, if possible, and

further refining its ability to interact with and enhance in-

house models.

7 Conclusion

WatGPT epitomizes a concerted effort to harness the

transformative potential of large language models in

quantitative finance. By delineating clear project goals,

aligning model architectures with specific tasks, and fostering

a nuanced understanding of model efficiency, this endeavor

lays the groundwork for a paradigm shift in algorithmic

trading, risk management, portfolio optimization, and several

other finance tasks.

References

[1] BloombergGPT: A Large Language Model for Finance. (2024).

Retrieved from Bloomberg

[2] Gu, A., Goel, K., & Ré, C. (2022). Efficiently Modeling Long

Sequences with Structured State Spaces. Retrieved from

arXiv:2111.00396

[3] Peng, B., Alcaide, E., Anthony, Q., et al. (2023). RWKV:

Reinventing RNNs for the Transformer Era. Findings of the

Association for Computational Linguistics: EMNLP 2023, pages

14048–14077. Retrieved from RWKV-LM GitHub

[4] O. Press, N. A. Smith, and M. Lewis, "Train Short, Test Long:

Attention with Linear Biases Enables Input Length

Extrapolation," in *Proceedings of the International Conference

on Learning Representations (ICLR)*, 2022. Available:

https://arxiv.org/abs/2108.12409

[5] A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, "HiPPO:

Recurrent Memory with Optimal Polynomial Projections,"

arXiv preprint arXiv:2008.07669, October 2020. Available:

https://arxiv.org/abs/2008.07669

[6] L. Xue, A. Barua, N. Constant, R. Al-Rfou, S. Narang, M. Kale,

A. Roberts, and C. Raffel, "ByT5: Towards a Token-Free Future

with Pre-trained Byte-to-Byte Models," 2022. Retrieved from

https://github.com/google-research/byt5

[7] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G.

Hinton, J. Dean, "Outrageously Large Neural Networks: The

Sparsely-Gated Mixture-of-Experts Layer," *arXiv preprint

arXiv:1701.06538*, 2017. Available:

https://arxiv.org/abs/1701.06538

[8] A. Gu* and T. Dao*, "Mamba: Linear-Time Sequence Modeling

with Selective State Spaces," Machine Learning Department,

Carnegie Mellon University, and Department of Computer

Science, Princeton University, 2023. Email: agu@cs.cmu.edu,

tri@tridao.me. Available online: https://github.com/state-

spaces/mamba

[9] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,

E. Rutherford, D. de Las Casas, L. A. Hendricks, J. Welbl, A.

Clark, T. Hennigan, E. Noland, K. Millican, G. van den

Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E.

Elsen, J. W. Rae, O. Vinyals, and L. Sifre, "Training Compute-

Optimal Large Language Models," arXiv preprint

arXiv:2203.15556, Mar. 2022.

https://arxiv.org/abs/2111.00396
https://github.com/BlinkDL/RWKV-LM
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2008.07669
https://github.com/google-research/byt5
https://arxiv.org/abs/1701.06538
https://github.com/state-spaces/mamba
https://github.com/state-spaces/mamba

