
Sentiment Analysis for Financial News using Deep
Learning

Megha Raj

1 Project Overview

The project aims to develop a deep learning model to analyze and classify the sentiment
of financial news related to Apple Inc. (AAPL). By using natural language processing
(NLP) and deep learning techniques, the project seeks to derive actionable insights from
news data, which can assist in making informed investment decisions.

2 Sub-objectives and Methodology

2.1 Data Collection and Preprocessing

Data Collection:

1 import requests

2 import pandas as pd

3

4 ticker = "AAPL"

5 url = f’https ://www.alphavantage.co/query?function=NEWS_SENTIMENT&

tickers ={ ticker }&sort=LATEST&limit =1000& apikey=YOUR_API_KEY ’

6 r = requests.get(url)

7 data = r.json()

8 summaries_list = [item[’summary ’] for item in data["feed "]]

9 summaries_df = pd.DataFrame(summaries_list , columns=[’Summary ’])

Description: News summaries related to AAPL are retrieved using the Alpha Vantage
API. These summaries are collected into a list and then converted into a DataFrame for
further analysis. This approach allows aggregation of relevant news data for sentiment
analysis.

Text Cleaning:

1 import re

2 import nltk

3 from nltk.corpus import stopwords

4 from nltk.stem.wordnet import WordNetLemmatizer

5

6 nltk.download(’stopwords ’)

7 nltk.download(’wordnet ’)

8 stop_words = set(stopwords.words(’english ’))

9 lmtzr = WordNetLemmatizer ()

10

11 def pre_process(text):

12 text = text.lower()

1

13 text = re.sub(r’\w+:\/{2}[\d\w -]+(\.[\d\w-]+) *(?:(?:\/[^\s/]*))

*’, ’’, text)

14 text = re.sub ("< ;/?.*?& gt;", " <> ", text)

15 text = re.sub ("(\\d|\\W)+", " ", text)

16 text = [word for word in text.split() if word not in stop_words

and len(word) >= 3]

17 text = [lmtzr.lemmatize(word) for word in text]

18 return ’ ’.join(text)

19

20 summaries_df[’Summary ’] = summaries_df[’Summary ’]. apply(pre_process)

Description: Text preprocessing is essential for cleaning and standardizing the news
summaries. The text is converted to lowercase, URLs and HTML tags are removed, and
irrelevant characters are filtered out. Stopwords are eliminated, and lemmatization is
applied to reduce words to their base forms. This ensures the text data is in a suitable
format for modeling.

2.2 Model Building and Training

Data Preparation:

1 from sklearn.model_selection import train_test_split

2 from sklearn.feature_extraction.text import TfidfVectorizer

3 from keras.preprocessing.text import Tokenizer

4 from keras.preprocessing.sequence import pad_sequences

5

6 # Concatenating datasets

7 source = pd.concat ([source_1_df , source_2_df], ignore_index=True)

8

9 # Splitting data

10 X_train , X_test , y_train , y_test = train_test_split(source[’text ’],

source[’label ’], test_size =0.3, random_state =18)

11

12 # TF-IDF Vectorization

13 vectorizer = TfidfVectorizer(max_features =5000)

14 X_train_vec = vectorizer.fit_transform(X_train)

15 X_test_vec = vectorizer.transform(X_test)

16

17 # Tokenization and Padding

18 tokenizer = Tokenizer(num_words =5000)

19 tokenizer.fit_on_texts(source[’text ’])

20 X_train_seq = tokenizer.texts_to_sequences(X_train)

21 X_test_seq = tokenizer.texts_to_sequences(X_test)

22 X_train_pad = pad_sequences(X_train_seq , maxlen =100)

23 X_test_pad = pad_sequences(X_test_seq , maxlen =100)

Description: The data is prepared for the model by combining datasets, splitting into
training and testing sets, and converting text data into numerical features using TF-IDF
and tokenization. Padding ensures that all text sequences are of uniform length, which
is crucial for training deep learning models.

Model Building:

1 from keras.models import Sequential

2 from keras.layers import Dense , Embedding , LSTM

3

4 model = Sequential ()

5 model.add(Embedding (5000 , 128, input_length =100))

2

6 model.add(LSTM (128, dropout =0.2, recurrent_dropout =0.2))

7 model.add(Dense(3, activation=’softmax ’))

8 model.compile(loss=’sparse_categorical_crossentropy ’, optimizer=’

adam ’, metrics=[’accuracy ’])

9 history = model.fit(X_train_pad , y_train , epochs =10, batch_size =64,

validation_data =(X_test_pad , y_test))

Description: A Sequential neural network model is built with an embedding layer to
convert word indices into dense vectors, an LSTM layer to capture sequential dependen-
cies in the text, and a dense output layer with softmax activation to classify sentiments
into three categories. The model is trained using the prepared data, with metrics moni-
tored to evaluate performance.

2.3 Model Evaluation and Application

Evaluation:

1 from sklearn.metrics import classification_report , confusion_matrix

2 import matplotlib.pyplot as plt

3

4 loss , accuracy = model.evaluate(X_test_pad , y_test)

5 print(f’Test Loss: {loss}’)

6 print(f’Test Accuracy: {accuracy}’)

7

8 y_pred = model.predict(X_test_pad)

9 y_pred_classes = y_pred.argmax(axis =1)

10 print(classification_report(y_test , y_pred_classes))

11 print(confusion_matrix(y_test , y_pred_classes))

12

13 plt.figure(figsize =(12, 4))

14 plt.subplot(1, 2, 1)

15 plt.plot(history.history[’accuracy ’])

16 plt.plot(history.history[’val_accuracy ’])

17 plt.title(’Model accuracy ’)

18 plt.xlabel(’Epoch ’)

19 plt.ylabel(’Accuracy ’)

20 plt.legend([’Train ’, ’Validation ’], loc=’upper left ’)

21

22 plt.subplot(1, 2, 2)

23 plt.plot(history.history[’loss ’])

24 plt.plot(history.history[’val_loss ’])

25 plt.title(’Model loss ’)

26 plt.xlabel(’Epoch ’)

27 plt.ylabel(’Loss ’)

28 plt.legend([’Train ’, ’Validation ’], loc=’upper left ’)

29

30 plt.show()

Description: The model’s performance is evaluated on the test data using accuracy
and loss metrics. Classification reports and confusion matrices provide detailed insights
into model performance, including precision, recall, and F1-score. Training and validation
accuracy/loss are plotted to visualize the learning process.

Sentiment Prediction:

1 new_texts = summaries_df[’Summary ’]. tolist ()

2 new_texts_seq = tokenizer.texts_to_sequences(new_texts)

3 new_texts_pad = pad_sequences(new_texts_seq , maxlen =100)

3

4 predictions = model.predict(new_texts_pad)

5 predicted_classes = predictions.argmax(axis =1)

6

7 summaries_df[’Predicted_Label ’] = predicted_classes

8 sentiments = {0: "Bearish", 1: "Bullish", 2: "Neutral "}

9 summaries_df[’Sentiment ’] = summaries_df[’Predicted_Label ’]. map(

sentiments)

Description: The trained model is applied to new news summaries to predict sen-
timents. Predictions are converted into human-readable labels (”Bearish”, ”Bullish”,
”Neutral”) and added to the DataFrame. This helps in assessing the overall sentiment
towards AAPL stock.

3 Challenges and Roadblocks

3.1 Twitter Data Access

Issue: Limited access to Twitter data due to subscription constraints and API limita-
tions.

Impact: Unable to incorporate recent tweets, affecting the richness and timeliness of
the dataset.

3.2 Web Scraping Limitations

Issue: Full articles could not be retrieved due to web scraping restrictions and potential
IP blocking.

Impact: Limited availability of complete articles reduced the dataset’s completeness
and depth.

3.3 NewsAPI Limitations

Issue: NewsAPI could not be utilized effectively as it did not interpret ticker symbols
accurately, and using generic terms like ”apple” returned unrelated articles.

Impact: The relevance of collected news articles was compromised, affecting the
quality of sentiment analysis.

4 Future Work

4.1 Deep Learning Enhancements

Objective: Improve the performance of the deep learning model through advanced fine-
tuning and hyperparameter tuning.

Approach: Experiment with various hyperparameters and optimization techniques to
enhance model accuracy and robustness.

4.2 CNN for Sentiment Weight Prediction

Objective: Explore the use of Convolutional Neural Networks (CNNs) to predict weights
used in sentiment score calculation.

4

Approach: Develop and test CNN models to capture local patterns and features in
text data, potentially improving sentiment classification. Compare CNN performance
with LSTM-based models to determine their relative effectiveness.

4.3 Data Expansion

Objective: Increase the diversity and volume of data by adding more sources such as
financial reports, additional news sources, and social media platforms.

Approach: Integrate data from various sources and ensure that the data aggregation
process adheres to legal and ethical guidelines. Utilize APIs and web scraping techniques,
where permissible, to gather a broader range of information.

5 Conclusion

This project successfully developed and implemented a deep learning-based sentiment
analysis model for financial news related to AAPL. By leveraging natural language pro-
cessing and deep learning techniques, the project provided valuable insights into the
sentiment surrounding the stock. Despite challenges related to data access and integra-
tion, the project achieved its primary goal of classifying news sentiment. The outlined
future work aims to further enhance the model’s performance, expand data sources, and
improve interpretability and robustness, potentially leading to more informed investment
decisions and advanced financial analysis tools.

5

	Project Overview
	Sub-objectives and Methodology
	Data Collection and Preprocessing
	Model Building and Training
	Model Evaluation and Application

	Challenges and Roadblocks
	Twitter Data Access
	Web Scraping Limitations
	NewsAPI Limitations

	Future Work
	Deep Learning Enhancements
	CNN for Sentiment Weight Prediction
	Data Expansion

	Conclusion

